
www.manaraa.com

On Dynamic Output Feedback Guaranteed Cost

Control of Uncertain Discrete-Delay Systems:

LMI Optimization Approach1
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Abstract. In this paper, we consider a design problem of dynamic

output feedback controller for guaranteed cost stabilization of discrete-

delay systems with norm-bounded time-varying parameter uncertainties.

A linear-quadratic cost function is considered as a performance measure

for the closed-loop system. Based on the Lyapunov second method,

several stability criteria for the existence of the controller are derived in

terms of linear matrix inequalities (LMIs). The solutions of the LMIs can

be obtained easily using existing efficient convex optimization techniques.

A numerical example is given to illustrate the proposed method.
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1. Introduction

During the last three decades, the problems of the robust stability and

performance for uncertain dynamic systems have received considerable

attention; see e.g. Refs. 1–3 and references therein. One design approach to

deal with uncertain dynamic systems is the guaranteed cost control, first

introduced by Chang and Peng (Ref. 4). This approach has the advantage of

providing an upper bound on a given performance index and thus the system
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performance degradation incurred because of the uncertainties is guaranteed

to be less than this bound; see Refs. 4–7. Another front of control systems

research is on time-delay systems. Delays occur often in the transmission of

material or information between different parts of a system and are fre-

quently a source of instability and poor performance. Communication sys-

tems, transmission systems, chemical procession systems, metallurgical

processing systems, environmental systems, and power systems are examples

of time-delay systems. Considerable efforts have been applied extensively to

different aspects of time-delay systems during recent years; see the guided

tours in Refs. 8–13. More recently, some significant results on guaranteed

cost stabilization of time-delay systems have been proposed; see e.g. Refs.

14–18. In particular, Esfahani and Petersen (Ref. 18) introduced a design

method for a class of dynamic output controllers using the LMI optimization

approach. All this work has been developed for continuous time-delay sys-

tems or nondelayed discrete-time systems. Less attention has been paid to

discrete-delay system. The asymptotic stability analysis of systems has been

introduced in Refs. 19–22 using the characteristic equation or the Lyapunov

method.

This paper is concerned with the problem of the robust guaranteed cost

stabilization of discrete-delay systems with time-varying parametric uncer-

tainties using dynamic output feedback controllers. We provide an LMI

optimization problem for the existence of the controller, which renders

the robust stability of the closed-loop system and guarantees an adequate

level of performance. Since the proposed optimization problem ensures

that a global optimum is reachable when it exists, the solutions and the

upper bound of the guaranteed cost can be obtained at the same time. Uti-

lizing the solutions, we can find easily a stabilizing dynamic output feedback

controller by solving another LMI according to the procedure developed in

Ref. 23.

The paper is organized as follows. In Section 2, the problem statement

and notation of the guaranteed cost stabilization for discrete-delay system is

introduced. Three main results and a numerical example are presented in

Section 3. Finally, Section 4 concludes the paper.

Notations. The notations used in this paper are fairly standard. The

superscript T denotes matrix or vector transpose. Rn denotes the n-dimen-

sional Euclidean space, Rn ·m is the set of all n·m real matrices, I is the

identity matrix with appropriate dimensions, and an asterisk represents the

elements below the main diagonal of a symmetric block matrix. The nota-

tion X>0 [X<0] for X˛Rn · n, means that the matrix X is symmetric and

positive definite [negative definite].
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2. Problem Formulation

Consider the following discrete-delay systems with time-varying un-

certainties:

x(k+ 1) = (A + DA(k))x(k) + (Ad + DAd(k))x(k – h)

+ (B + DB(k))u(k), (1a)

y(k) =Cx(k), (1b)

x(k) = f(k), k [̨– h, 0], (1c)

where x(k)˛Rn is the state, u(k)˛Rm is the control, y(k)˛R l is the output,

h is delay time in the system, A, Ad, B, C are constant matrices with appro-

priate dimensions, DA(k),DAd (k),DB(k) are real-valued matrices represen-

ting the time-varying parameter uncertainties in the system, and f (k) is a

vector-valued initial condition function.

Assume that the triplet (A,B,C ) is stabilizable and detectable and that

the time-varying uncertainties are of the form

DA(k) =D1F1(k)E1, DAd (k) =D2F2(k)E2, (2a)

DB(k) =D3F3(k)E3, (2b)

where D1,D2,D3,E1,E2,E3 are known constant real matrices with appro-

priate dimensions and F1(k),F2(k),F3(k) are unknown matrix functions

which are bounded,

FT
1 (k)F1(k)#I , FT

2 (k)F2(k)#I , (3a)

FT
3 (k)F3(k)#I , 8k$0: (3b)

Associated with the system (1) is the following quadratic cost function:

J = �
O

k=0
[xT (k)Q1x(k) + uT (k)Q2u(k)], (4)

where Q1˛Rn · n and Q2˛Rm ·m are given positive-definite matrices.

Now, in order to stabilize the system (1), let us consider the following

dynamic output feedback controller:

x(k + 1) =Acx(k) + Bcy(k), (5a)

u(k) =Ccx(k)+Dcy(k), (5b)

x(0) = 0, (5c)

where x (k)˛Rk and Ac,Bc,Cc,Dc are constant matrices with proper dimen-

sions. Then, for all the admissible uncertainties and time delay h, the pro-

blem is to find the parameters of the dynamic controller (5) such that

the resulting closed-loop system is globally asymptotically stable and the

JOTA: VOL. 121, NO. 1, APRIL 2004 149



www.manaraa.com

closed-loop value of the cost function (4) satisfies J#J*, where J* is some

specified constant.

Definition 2.1. For the system (1) and cost function (4), if there exist

a control law u*(k) and a positive J* such that the resulting closed-loop sys-

tem is asymptotically stable and the closed-loop value of the cost function

(4) satisfies J#J*, then J* is said to be a guaranteed cost and u*(k) is said

to be guaranteed cost control law of the system (1) and cost function (4).

Before proceeding further, we will state some well-known lemmas.

Lemma 2.1. Schur complements. See Ref. 26. Given the constant

symmetric matrices W1,W2,W3 where W1 =W1
T and 0<W2 =W2

T, then W1 +

W3
TW2

–1W3<0 if and only if

W1 WT
3

W3 –W2

� �
<0 or

–W2 W3

WT
3 W1

� �
<0:

Lemma 2.2. See Ref. 23. Consider the problem of finding some

matrix K of compatible dimensions such that

Y+PKTQT +QKPT <0, (6)

where Y is any symmetric matrix and P and Q are matrices with appropriate

dimensions. Let P̄ and Q̄ be the matrices whose columns are formed by the

bases of the null spaces of P and Q. Then, the above inequality (6) is solvable

for K if and only if

P̄TYP̄<0, Q̄TYQ̄<0: (7)

3. Main Results

In this section, we establish several criteria for the guaranteed cost sta-

bilization of the system (1) with dynamic output feedback controller (5)

using the Lyapunov method and the LMI technique.

Let us define the augmented state vector and the controller gain matrix

K˛R(m+k) · (m+k) as

xc(k) =
x(k)

x(k)

� �
, K =

Dc Cc

Bc Ac

� �
: (8)

The closed-loop system (1) with the controller (5) can be described in the

form

xc(k+ 1) = Âxc(k) + Âdx(k – h): (9)
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Here,

Â = Ā+ B̄KC̄+D̄1F1(k)Ē1 +D̄3F3(k)Ē3KC̄, (10a)

Âd = Ād +D̄2F2(k)E2, (10b)

where

Ā=
A 0

0 0

" #
, B̄=

B 0

0 I

" #
, C̄=

C 0

0 I

" #
, (11a)

D̄1 =
D1

0

" #
, D̄2 =

D2

0

" #
, D̄3 =

D3

0

" #
, (11b)

Ād =
Ad

0

" #
, Ē1 = [E1 0], Ē3[E3 0]: (11c)

The corresponding closed-loop cost function is

J = �
O

k=0
xT
c (k)

Q1 +CTDT
c Q2DcC CTDT

c Q2Cc

* CT
c Q2Cc

" #
xc(k)

= �
O

k=0
xT
c (k)

Q1 0

0 0

" #
+C̄TKT

Q2 0

0 0

" #
KC̄

 !
xc(k)

” �
O

k=0
xT
c (k)Qxc(k): (12)

Then, we have the following theorem.

Theorem 3.1. For given S >0, Q1 >0, Q2 >0, the dynamic controller

u(k) given by (5) is a guaranteed cost control law for the system (1) if there

exist a matrix P>0 such that the following LMI holds:

W0 =
ÂTPÂ – P +R +Q ÂTPÂd

ÂT
d PÂ ÂT

d PÂd – (S +ET
2 E2)

" #
<0, (13)

where the matrix R is defined as

R =
S +ET

2 E2 0

0 0

" #
:

Then, the upper bound of the cost function (4) is as follows:

J#xT
c (0)Pxc(0)+ �

h

i=1
xT
c (– i)Rxc(– i)JJ*: (14)

JOTA: VOL. 121, NO. 1, APRIL 2004 151



www.manaraa.com

Proof. Define a Lyapunov function of the form

V (xc(k)) :=xT
c (k)Pxc(k) + �

k–1

i = k – h
xT
c (i)Rxc(i): (15)

By evaluating the corresponding Lyapunov difference along the solutions of

the system (9), we get

DVk =Vk+1 –Vk

= zT (k)
ÂTPÂ – P +R ÂTPÂd

ÂT
d PÂ ÂT

d PÂd – (S +ET
2 E2)

2
4

3
5z(k)

= zT (k)W0z(k) – x
T
c (k)Qxc(k), (16)

where

z(k) =
xc(k)

x(k – h)

" #
:

Noting that Q$0, the Lyapunov difference is negative if there exists a

positive-definite matrix P such that W0 is a negative definite matrix. This

implies that there exist a positive scalar g such that

DVk< – g x(k)k k2
,

which guarantees the asymptotic stability of the system by Lyapunov sta-

bility theory. Furthermore, from (16), we have

xT
c (k)Qxc(k)# – DVk =V (k) –V (k + 1):

Summing both sides of the above inequality from 0 to O leads to

�
O

k=0
xT
c (k)Qxc(k)#V (0) –V (O):

Since the asymptotic stability of the system has been established already, we

conclude that

V (k)fi0, as kfiO:

Hence, we have

J#V (0)= J*: (17)

This completes the proof. u
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Since the LMI (13) contains uncertain matrices, it is difficult to test

whether the inequality is satisfied. In the following, we give a verifiable

equivalent characterization of the condition in Theorem 3.1.

By Lemma 2.1 (Schur complements), the fact is that the inequality

W0<0 is equivalent to the following matrix inequality:

W1 ”

– P –1 Â Âd

* – P+R+Q 0

* * – (S + ET
2 E2)

2
664

3
775

=

– P – 1
Ā+ B̄KC̄+D̄1F1Ē1

+D̄3F3Ē3KC̄

 !
Ād +D̄2F2E 2

* – P +R+Q 0

* 0 – (S +ET
2 E2)

2
66664

3
77775<0: (18)

Using the known fact that

UDVT+VDUT #eUUT + e–1VVT , e>0,

for any matrices U,V,D with DTD#I, we can eliminate the unknown factor

Fi(k) due to the parameter uncertainties. Then, we have

W1#W2 =

– P – 1 +D̄1D̄
T
1

+D̄2D̄
T
2 +D̄3D̄

T
3

 !
Ā+ B̄KC̄ Ād

*
– P +R +Q + ĒT

1 Ē1

+C̄TK TĒT
3 Ē3KC̄

 !
0

* * – S

2
666666664

3
777777775
: (19)

For simplicity, define D̄ as

D̄=D̄1D̄
T
1 +D̄2D̄

T
2 +D̄3D̄

T
3 :

Here, we decompose the term R+Q + Ē1
TĒ1 + C̄TKTĒ3

TĒ3KC̄ of the (2, 2)

entry in the matrix W2 as

R+Q + ĒT
1 Ē1 +C̄TKTĒT

3 Ē3KC̄

=
S + ET

1 E1 + ET
2 E2 +Q1 0

0 0

" #
+

0 0

0 CT
c (ET

3 E3 +Q2)Cc

" #

” S̄ +C̄TKTQ̄KC̄, (20)
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where

Q̄ =
ET

3 E3 +Q2 0

0 0

" #
:

Defining

De = (D1D
T
1 +D2D

T
2 +D3D

T
3 )1=2,

Qe = (ET
3 E3 +Q2)

1=2,

Se = (S + ET
1 E1 + ET

2 E2 +Q1)
1=2,

and using Lemma 2.1 and (20), the fact that W2<0 is equivalent to

– P – 1 D̂ Ā+ B̄KC̄ 0 0 Ād

* – I 0 0 0 0

* * – P Ŝ C̄TKTQ̂T 0

* * * – I 0 0

* * * * – I 0

* * * * * – S

2
6666666664

3
7777777775
<0, (21)

where

D̂=
De 0

0 0

" #
, Ŝ =

Se 0

0 0

" #
, Q̂=

Qe 0

0 0

" #
:

The inequality (21) can be decomposed as follows:

Y+PKQT +QKTPT <0, (22)

where

Y=

– P – 1 D̂ Ā 0 0 Ād

* – I 0 0 0 0

* * – P Ŝ 0 0

* * * – I 0 0

* * * * – I 0

* * * * * – S

2
666666664

3
777777775
, P =

B̄

0

0

0

Q̂

0

2
66666664

3
77777775
, Q =

0

0

C̄T

0

0

0

2
66666664

3
77777775
: (23)

It is clear that the inequality (22) is the criterion for the guaranteed cost

stabilization of the closed-loop system (9). If we can find an appropriate

P>0, the inequality (22) becomes an LMI with respect to K, which can be

solved easily by various efficient convex optimization algorithms (Ref. 26).

To the above end, we can invoke now Lemma 2.2 to obtain solvability
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conditions for (22). Then, the inequality (22) is equivalent to

PT
’YP’<0 (24)

and

QT
’YQ’<0, (25)

where P? and Q? are any matrices whose columns form the bases of the null

spaces of P and Q, respectively.

Now, we will find the matrix P which satisfies (24) and (25). Let us

choose [W1
T,W2

T]T and W3 as the orthogonal complement of [BT,Qe
T]T and

CT, respectively. Then,

P’ =

W1

0

" #
0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

W2 0 0 0 0

0 0 0 0 I

2
6666666666664

3
7777777777775
, Q’ =

0 0 0 0 I 0

0 0 0 0 0 I

W3

0

" #
0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

2
6666666666664

3
7777777777775
: (26)

Now, proceeding along lines similar to those in the Gahinet and Apkarian

work (for details, see Ref. 23), we obtain simplified conditions equivalent to

(24) and (25) utilizing the internal structure of the augmented matrices such

as (11a), (23), and (26).

To simplify the condition (24), we partition P and P–1 as

P =
Y N

NT �

" #
, P–1 =

X M

MT �

" #
, (27)

where X,Y˛Rn · n, M,N˛Rn · k, � means irrelevant, and

MNT = I –XY : (28)

Using Lemma 2.1 and carrying out block multiplication with (26) and

(27), the inequality (24) simplifies to the following LMI:

WT
x

–X +AXAT De AXSe 0 Ad

* – I 0 0 0

* * – I + ST
e XSe 0 0

* * * – I 0

* * * * – S

2
6666664

3
7777775
Wx<0, (29)
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where

Wx =

W1 0 0 0

0 I 0 0

0 0 I 0

W2 0 0 0

0 0 0 I

2
6666664

3
7777775
:

Also, performing the same procedure on (25), the inequality (25) simplifies to

WT
y

–Y +ATYA Se ATYAd ATYDe

* – I 0 0

* * – S +AT
d YAd AT

d YDe

* * * – I +DT
e YDe

2
66664

3
77775Wy<0, (30)

where

Wy =
W3 0

0 I

" #
:

Since P is a positive-definite matrix, we need an additional condition on

X and Y (Refs. 23–25),

X I

I Y

" #
$0: (31)

On the other hand, the upper bound J* given in (17) of the cost function (4)

can be rewritten as

J#xT (0)Yx(0) + �
h

i=1
xT (– i)(S +ET

2 E2)x(– i)JJ*: (32)

Now, we can summarize our second result in following theorem.

Theorem 3.2. For the given uncertain discrete-delay system (1) with

dynamic output feedback controller (5) and S >0, if there exist X >0 and

Y >0 such that the three LMIs (29), (30), (31) hold, there exists a P >0

satisfying the inequalities (24) and (25). Then, the parameter K satisfying

the inequality (22) also exists by Lemma 2.2. Furthermore, the controller

parameter matrix K is a control law for the robust guaranteed cost stabili-

zation of the uncertain system (9) and the corresponding closed-loop value

of the cost function satisfied J#J*, in which J* is given by (32).
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Theorem 3.2 presents a method of designing a dynamic output feedback

guaranteed cost controller. The following theorem presents a method of se-

lecting a controller minimizing the upper bound of the guaranteed cost (32).

Theorem 3.3. Consider the system (9) with cost function (4). If the

following LMI optimization problem:

min
X > 0,Y > 0,a > 0

a , (33a)

s:t: (i) LMIs (29), (30), (31), (33b)

(ii)
– a xT (0)Y

Yx(0) –Y

" #
<0, (33c)

has a positive solution set (X,Y,a), then the control law (5) is an optimal

robust guaranteed cost control law which ensures the minimization of the

guaranteed cost (32) for the system (9).

Proof. By Theorem 3.2, (i) in (33) is clear. Also, it follows from the

Lemma 2.1 that (ii) in (33) are equivalent to

xT (0)Yx(0)<a :

Hence, it follows from (32) that

J*<a + b ,

where

b = �
h

i=1
xT (– i)(S +ET

2 E2)x(– i):

Thus, the minimization of a implies the minimization of the guaranteed cost

for the system (9). This convex optimization problem guarantees that a

global optimum, when it exists, is reachable (Ref. 26). u

Remark 3.1. To find the controller parameter matrix K, first find a

solution (X,Y ) of the optimization problem (33) and second find two full-

column-rank matrices M,N˛Rn · k satisfying (28). Then, we can find the

unique matrix P from

Y I

NT 0

" #
= P

I X

0 MT

" #
: (34)
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For the matrix P, the controller parameter matrix K can be obtained easily

by solving the LMI (22). Moreover, if

rank(I –XY ) = k

for the solution matrices X and Y, the order of the dynamic controllers is k

(Ref. 23).

Remark 3.2. In this paper, in order to solve the LMIs, we utilize the

Matlab LMI Control Toolbox (Ref. 27), which implements state-of-the-

art interior-point algorithms, which are significantly faster than classical

convex optimization algorithms (Ref. 26).

Remark 3.3. In Ref. 18, the problem of the dynamic output con-

troller design for guaranteed cost stabilization of a class of time-delay

systems in the continuous-time domain has been studied. However, the

controller designed is strictly a proper one, i.e, Dc = 0. This is a special case

of our design approach.

Example 3.1. Consider the system (1) with

A =
0 1:2

– 1:2 0

" #
, Ad =

0:2 0:1

0:1 0:2

" #
,

B =
0

1

" #
, C = [ 1 0 ],

DA =
0:2

0

" #
F1(k)[ 1 1 ], DAd =

0:1

0

" #
F2(k)[ 1 1 ],

DB =
0

0:2

" #
F3(k), h = 5, S = I ,

where

FT
i (k)Fi(k)#I , i = 1, 2, 3;

the initial condition of the system is as follows:

x(t) = [1, – 1]T , – 5#k#0:

Actually, when the control input is not applied to this system, it can be seen

easily that the system trajectory goes to infinity as kfiO. Here, associated

with this system is the cost function (4) with Q1 = 0.1I and Q2 = 0.1. Also, let
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S= I. From the relation

b = �
h

i=1
xT (– i)(S +ET

2 E2)x(– i),

we have b= 10.

Now, solving the optimization problem of Theorem 3.3 using the

Matlab LMI Control Toolbox (Ref. 27), we can get the solution of the pro-

blem as

X =
0:3180 – 0:0065

– 0:0065 0:1210

" #
, Y =

4:0917 – 1:5329

– 1:5329 11:3481

" #
, a = 18:5056,

and a pair of solution matrices satisfying (28) is

M =
– 0:2087 0:6123

0:6123 0:2087

" #
, N =

0:4655 – 0:3495

– 0:8399 0:6306

" #
:

Then, the positive-definite solution P from the relation (34) can be obtained

as

P =

4:0917 – 1:5329 0:4655 – 0:3495

– 1:5329 11:3481 – 0:8399 0:6306

0:4655 – 0:8399 0:2297 – 0:1724

– 0:3495 0:6306 – 0:1724 0:1294

2
66664

3
77775:

Therefore, by solving the LMI (22) with respect to K, we can find a stabi-

lizing guaranteed cost dynamic output feedback controller as

K =

1:0342 – 0:0684 0:0514

– 1:5461 – 0:5642 0:4237

1:1309 0:5571 – 0:4180

2
64

3
75,

and the optimal guaranteed cost of the closed-loop system is

J* = a + b = 28:5056:

The responses of the states and control input of the above system with

Fi(k) = 1, i = 1, 2, 3, are given Figs. 1 and 2.

4. Conclusions

In this paper, the guaranteed cost stabilization problem for uncertain

discrete-delay systems has been investigated based on the Lyapunov method.
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Fig. 1. State responses of the closed-loop system.

Fig. 2. Control input.
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A dynamic output feedback controller for the stabilization of the system has

been proposed. It is shown that selecting an optimal controller in the sense of

guaranteeing the asymptotic stability of the closed-loop system and mini-

mizing the upper bound of quadratic performance index lead to a convex

optimization problem with some LMIs restrictions, which can be solved by

various efficient algorithms.
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